Can someone explain to me what I would need to do in terms of resources (GPU, I assume) if I want to run 20 concurrent processes, assuming I need 1k tokens/second throughput (on each, so 20 x 1k)
Also, is this model better/comparable for information extraction compared to gpt-4.1-nano, and would it be cheaper to host myself 20b?
> assuming I need 1k tokens/second throughput (on each, so 20 x 1k)
3.6B activated at Q8 x 1000 t/s = 3.6TB/s just for activated model weights (there's also context). So pretty much straight to B200 and alike. 1000 t/s per user/agent is way too fast, make it 300 t/s and you could get away with 5090/RTX PRO 6000.
You also need space in VRAM for what is required to support the context window; you might be able to do a model that is 14GB in parameters with a small (~8k maybe?) context window on a 16GB card.
I legitimately cannot think of any hardware that will get you to that throughput over that many streams with any of the hardware I know of (I don't work in the server space so there may be some new stuff I am unaware of).
I don't think you can get 1k tokens/sec on a single stream using any consumer grade GPUs with a 20b model. Maybe you could with H100 or better, but I somewhat doubt that.
My 2x 3090 setup will get me ~6-10 streams of ~20-40 tokens/sec (generation) ~700-1000 tokens/sec (input) with a 32b dense model.
(answer for 1 inference)
Al depends on the context length you want to support as the activation memory will dominate the requirements. For 4096 tokens you will get away with 24GB (or even 16GB), but if you want to go for the full 131072 tokens you are not going to get there with a 32GB consumer GPU like the 5090. You'll need to spring for at the minimum an A6000 (48GB) or preferably an RTX 6000 Pro (96GB).
Also keep in mind this model does use 4-bit layers for the MoE parts. Unfortunately native accelerated 4-bit support only started with Blackwell on NVIDIA. So your 3090/4090/A6000/A100's are not going to be fast. An RTX 5090 will be your best starting point in the traditional card space. Maybe the unified memory minipc's like the Spark systems or the Mac mini could be an alternative, but I do not know them enough.
so, the 20b model.
Can someone explain to me what I would need to do in terms of resources (GPU, I assume) if I want to run 20 concurrent processes, assuming I need 1k tokens/second throughput (on each, so 20 x 1k)
Also, is this model better/comparable for information extraction compared to gpt-4.1-nano, and would it be cheaper to host myself 20b?